Hepatitis C virus NS3/4A protease blocks IL-28 production.
نویسندگان
چکیده
Type I interferons (IFNs), including IFN-α, -β, and -ω, play a critical role in innate immune responses against viral infection. IFN-λ, including IL-29, IL-28A, and IL-28B, recently identified as a new subfamily of IFN named type III IFN, has also been demonstrated to suppress virus replication in vitro and in vivo. However, the molecular mechanisms that regulate the induction of type III IFNs during viral infection remain elusive. Here, we demonstrate that IL-28 (IFN-λ 2/3) IFN production, similar to type I IFN, represents a primary and direct host response to HCV genomic RNA transfection. IL-28 (IFN-λ2/3) induction by HCV genomic RNA was dependent upon the activation of NF-κB and IRF3. We identified a minimal IL-28 promoter region consisting of putative NF-κB and IRF3-binding sites. Furthermore, we showed that HCV infection can inhibit HCV genomic RNA-induced IL-28 expression, and that the viral NS3/4A protease activity was responsible for this inhibitory effect. Our results present important evidence for the control of type III IFN response by HCV, and shed more light on the molecular mechanisms underlying the persistence of HCV infection.
منابع مشابه
Complexity and catalytic efficiency of hepatitis C virus (HCV) NS3 and NS4A protease quasispecies influence responsiveness to treatment with pegylated interferon plus ribavirin in HCV/HIV-coinfected patients.
The role of the hepatitis C virus (HCV) NS3/4A protease in ablating the signaling pathway involved in the production of alpha/beta interferon (IFN-α/β) suggests a relationship between NS3/4A proteolytic activity and a patient's response to IFN-based therapy. To identify viral factors associated with the HCV treatment response, we analyzed the pretreatment NS3/4A protease gene quasispecies compo...
متن کاملHCV NS3 Blocking Effect on IFN Induced ISGs Like Viperin and IL28 With and Without NS4A
BACKGROUND Hepatitis C virus (HCV) is able to down-regulate innate immune response. It is important to know the immune pathways that this virus interacts with. HCV non-structural protein 3 (NS3) plays an important role in this viral feature. HCV NS3 protein could affect the expression of antiviral protein such as viperin, and interleukin 28whichare important proteins in antiviral response. OB...
متن کاملComputational Study on the Inhibitor Binding Mode and Allosteric Regulation Mechanism in Hepatitis C Virus NS3/4A Protein
HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But th...
متن کاملRegulation of interferon regulatory factor-3 by the hepatitis C virus serine protease.
Persistent infections with hepatitis C virus (HCV) are likely to depend on viral inhibition of host defenses. We show that the HCV NS3/4A serine protease blocks the phosphorylation and effector action of interferon regulatory factor-3 (IRF-3), a key cellular antiviral signaling molecule. Disruption of NS3/4A protease function by mutation or a ketoamide peptidomimetic inhibitor relieved this blo...
متن کاملHepatitis C Viral NS3-4A Protease Activity Is Enhanced by the NS3 Helicase*S⃞
Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European journal of immunology
دوره 42 9 شماره
صفحات -
تاریخ انتشار 2012